The classic website will no longer be available as of June 25, 2024. Please use the modernized ClinicalTrials.gov.
Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

Genotype -Phenotype Correlation of PKLR Variants With Pyruvate Kinase, 2,3-Diphosphglycerate and Adenosine Triphosphate Activities in Red Blood Cells of People With Sickle Cell Disease

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT03685721
Recruitment Status : Recruiting
First Posted : September 26, 2018
Last Update Posted : March 21, 2024
Sponsor:
Information provided by (Responsible Party):
National Institutes of Health Clinical Center (CC) ( National Heart, Lung, and Blood Institute (NHLBI) )

Brief Summary:

Background:

Some people with the same disorder on a genetic level have more complications than others. Researchers want to look for a link between the PKLR gene and sickle cell disease (SCD) symptoms. The PKLR gene helps create a protein, called pyruvate kinase that is essential in normal functioning of the red blood cell. Differences in the PKLR gene, called genetic variants, may cause some changes in the pyruvate kinase protein and other proteins, that can affect functioning of the red blood cell adding to the effect of SCD. Researchers can study these differences by looking at DNA (the material that determines inherited characteristics).

Objective:

To study how the PKLR gene affects sickle cell disease.

Eligibility:

Adults ages 18-80 of African descent. They may have sickle cell disease or not. They must not have had a transfusion recently or have a known deficiency of pyruvate kinase. They cannot be pregnant.

Design:

Participants will be screened with questions.

Participants will have blood drawn by needle in an arm vein. The blood will be genetically tested. Not much is known about how genes affect SCD, so the test results will not be shared with participants or their doctors.

...


Condition or disease
Sickle Cell PKLR Variants Adenosine Triphosphate Activities

Detailed Description:

Polymerization of deoxy-sickle-hemoglobin (deoxy-HbS), the root cause of sickle cell disease (SCD) is influenced by a few factors, a key factor is 2,3-diphosphoglycerate (2,3-DPG) concentration in the red blood cells. 2,3-DPG is an allosteric effector on hemoglobin oxygen binding with a greater binding affinity to deoxygenated hemoglobin than to oxygenated hemoglobin, thus favoring polymerization of deoxy-HbS. In addition, increased 2,3-DPG concentration decreases intracellular pH in red blood cells which further promotes HbS polymerization.

2,3-DPG is an intermediate substrate in the glycolytic pathway, the only source of ATP production in red blood cells. Pyruvate kinase (PK) is a key enzyme in the final step of glycolysis; PK converts phosphoenolpyruvate (PEP) to pyruvate, creating 50% of the total red cell adenosine triphosphate (ATP) that is essential for maintaining integrity of the red cell membrane. Indeed, PK deficiency (PKD) caused by mutations in the PKLR gene that encodes red cell PK, leads to chronic hemolytic anemia. Reduced PK activity leads to accumulation of the upstream enzyme substrates, including 2,3-DPG. While increased 2,3-DPG concentration and reduction of hemoglobin oxygen affinity is beneficial in anemia caused by PKD, increased 2,3-DPG levels combined with decreased intracellular red cell pH can be detrimental in the presence of HbS, as it favors deoxy-HbS polymerisation, and thereby intravascular sickling. Indeed, the combination of PK deficiency and sickle cell trait causing an acute sickling syndrome has been previously reported in two cases.

PKLR mutations, however, are rare but intraerythrocytic PK enzyme levels form a spectrum which suggest that PKLR is likely to be a quantitative trait gene. A genetic diversity in PKLR with a range of SNPs, including several loss-of-function variants have been described in malaria-endemic populations, some of which have been associated with a significant reduction in attacks with Plasmodium falciparum malaria. These observations suggest that similar to HbS, malaria has led to positive selection of PKLR variants in the same geographic regions.

This study seeks to determine the PKLR genetic diversity in our sickle cell cohort, and whether PKLR variants modify PK levels, and activities of 2,3-DPG and ATP, key players in the sickle pathology. If so, PKLR could be another genetic determinant of SCD severity and phenotype; and increasing PK-R activity, which leads to a decrease in intracellular 2,3-DPG concentration, presents an attractive therapeutic target for SCD.

Several approaches have been considered for targeting the polymerization of deoxy-HbS, the root cause of SCD. In addition to agents inducing fetal hemoglobin, other agents that target HbS polymerization through increasing affinity of hemoglobin for oxygen (eg. GBT440), are in clinical trials (NCT03036813; NCT02850406). The results of this study could form the basis for a clinical trial of AG348, an allosteric activator of PK that is already in clinical Phase 2/3 studies for PK deficiency (NCT02476916), for treating acute sickle cell pain.

Layout table for study information
Study Type : Observational
Estimated Enrollment : 800 participants
Observational Model: Case-Control
Time Perspective: Cross-Sectional
Official Title: Genotype -Phenotype Correlation of PKLR Variants With Pyruvate Kinase, 2,3-Diphosphglycerate and ATP Activities in Red Blood Cells of Patients With Sickle Cell Disease
Actual Study Start Date : October 11, 2018
Estimated Primary Completion Date : July 25, 2024
Estimated Study Completion Date : May 1, 2025

Resource links provided by the National Library of Medicine


Group/Cohort
HbAS
HbAS genotype, of African American descent;Between 18 and 80 years of age
Healthy control
African American descent;Between 18 and 80 years of age
SCD
HbSS, HbSC, HbSbeta-thal has sickle cell disease and is of African American descent;Between 18 and 80 years of age



Primary Outcome Measures :
  1. Genotype the 4 PKLR intron-2 variants [ Time Frame: Upon enrollment of each subject ]
    To have genotyped the 4 PKLR intron-2 variants in SCD patients from the NHLBI cohort using genomic DNA and compare them to a cohort of healthy ethnic-matched non-SCD controls and a cohort of sickle cell trait carriers, with those reported in 1000 genome project (http://www.1000genomes.org).

  2. Analysis of PK-R transcriptome in red blood cells [ Time Frame: Interim analysis performed for each group N=125 ]
    Have a correlated profile of the PK-R RNA sequence with the 4 PKLR intronic genetic variants.

  3. Correlation of 2,3-DPG, ATP and pyruvate kinase activities with PKLR intron-2 variants [ Time Frame: Interim analysis performed for each group N=125 ]
    Assess correlation between the quantitative assays and genotype



Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   18 Years to 80 Years   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes
Sampling Method:   Non-Probability Sample
Study Population
The study will be listed on the clinicaltrials.gov, Clinical Center research studies, and the National Heart, Lung and Blood Institute patient recruitment websites. Patients who are followed on other NHLBI sickle cell protocols may be asked to participate in this study, particularly subjects enrolled in the Natural History of Sickle Cell Disease (NCT00081523; 04-H-0161).
Criteria
  • INCLUSUION CRITERIA:
  • Between 18 and 80 years of age
  • African or of African descent

EXCLUSION CRITERIA:

  • History of blood transfusion within the last 8 weeks
  • Known to have pyruvate kinase deficiency and be on AG348
  • All volunteers will undergo the consent process under this protocol to allow for eligibility assessment. Once they have been consented to participate, they will undergo procedures per Protocol.

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT03685721


Contacts
Layout table for location contacts
Contact: Ingrid C Frey (301) 221-3820 ingrid.frey@nih.gov

Locations
Layout table for location information
United States, Maryland
National Institutes of Health Clinical Center Recruiting
Bethesda, Maryland, United States, 20892
Contact: For more information at the NIH Clinical Center contact Office of Patient Recruitment (OPR)    800-411-1222 ext TTY8664111010    prpl@cc.nih.gov   
Sponsors and Collaborators
National Heart, Lung, and Blood Institute (NHLBI)
Investigators
Layout table for investigator information
Principal Investigator: Swee Lay Thein, M.D. National Heart, Lung, and Blood Institute (NHLBI)
Additional Information:
Layout table for additonal information
Responsible Party: National Heart, Lung, and Blood Institute (NHLBI)
ClinicalTrials.gov Identifier: NCT03685721    
Other Study ID Numbers: 180146
18-H-0146
First Posted: September 26, 2018    Key Record Dates
Last Update Posted: March 21, 2024
Last Verified: February 22, 2024

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
Keywords provided by National Institutes of Health Clinical Center (CC) ( National Heart, Lung, and Blood Institute (NHLBI) ):
ATP
Trait
GDP
Genetics
Natural History
Additional relevant MeSH terms:
Layout table for MeSH terms
Anemia, Sickle Cell
Anemia, Hemolytic, Congenital
Anemia, Hemolytic
Anemia
Hematologic Diseases
Hemoglobinopathies
Genetic Diseases, Inborn