1 2 3	EFFICACY AND SAFETY OF ONCE WEEKLY SEMAGLUTIDE IN ADULTS WITH OBESITY AND INADEQUATELY CONTROLLED TYPE 1 DIABETES USING HYBRID CLOSED-LOOP SYSTEM
4	Short title: ADJUnct Semaglutide Treatment in Type 1 Diabetes (ADJUST-T1D)
5	
J	
6	
7	
8	INVESTIGATOR-SPONSORED STUDY PROPOSAL
9	(Universal That Number- 01111-1269-8469)
10	(Clinical Trial Number: NCT05537233)
11	
12	
13	Barbara Davis Center for Diabetes
14	University of Colorado Denver
15	1775 Aurora Ct, Room M20-1318
16	Aurora, CO 80045
17	
18	
19	
20	
21	
22	
23	Correspondence
24	
25	Viral N. Shah, MD
26	Associate Professor
27	Barbara Davis Center for Diabetes
28	School of Medicine
29	University of Colorado Anschutz Medical Campus
30	1775 Aurora Ct, Room M20-1318
31	Aurora, CO 80045
32	Phone: <u>303-724-8186</u>
33	Fax: <u>303-724-6784</u>
34	viral.shah@cuanschutz.edu
35	

36		
37		Investigators and Sites
38		
39	1)	Barbara Davis Center for Diabetes
40 41 42 43		Viral N Shah, MD, Principal Investigator Associate Professor, Barbara Davis Center for Diabetes, University of Colorado
44 45 46 47 48 49 50 51		 Halis Kaan Akturk, MD, Sub-Investigator Assistant Professor, Barbara Davis Center for Diabetes, University of Colorado Janet K Snell-Bergeon, PhD (T1D epidemiologist & Sub-investigator for exploratory CV-renal outcomes) & Laura Pyle, PhD (Lead statistician) Barbara Davis Center for Diabetes, University of Colorado
52	2)	Henry Ford Hospital, Detroit, MI
53 54 55 56		Davida Kruger, NP and Arti Bhan, MD Division of Endocrinology Diabetes and Metabolism, Henry Ford Hospital, Detroit, MI
57	3)	Iowa Diabetes Research Center
58 59 60 61 62		Anuj Bhargava, MD, Co-investigator and site PI Founder and Director, Iowa diabetes reserch center 1031 Office Park Road, Suite 2, West Des Moines, IA, 50265
63	4)	OHSU Harold Schnitzer Diabetes Health Center
64 65 66 67 68 69		Andrew Ahmann, MD, Co-investigator and site PI Professor of Medicine, Division of Endocrinology Director, Harold Schnitzer Diabetes Health Center 3181 SW Sam Jackson Park Rd, Portland, OR 97239-3098,s

71		Table of Contents	
72	1.	Background and Significance	5
73	2.	Specific Objective	6
74	3.	Research Design and Methods	8
75		3.1 Study Hypothesis	
76		3.2 Endpoints	
77		3.3 Study Design	9
78		3.4 Justification for Study Design	
79	4.	Clinical Research Sites	11
80	5.	Study Population	11
81		5.1 Inclusion Criteria	11
82		5.2 Exclusion Criteria	11
83		5.3 Rationale for Inclusion/Exclusion Criteria	
84		5.4 Withdrawal Criteria	
85		5.5 Subject Replacement	
86		5.6 Reminders	14
87	6.	Visit Procedures	14
88		6.1 Screening	
89		6.2 Randomization	
90		6.3 Semaglutide Dose, Titration, and Insulin Adjustment	
91		6.4 Clinic and Phone Visits	
92		6.5 Un-blinding	17
93	7.	Statistical Plan	
94		7.1 Preliminary Data for Sample Size Calculation	
95		7.2 Sample size calculation	
96		7.3 Evaluability of subjects	
97		7.4 Analysis Plan	
98	8.	Data Handling and Record Keeping	21
99		8.1 Data Management	21
100		8.2 Source Data	21
101	9	Ethics	22
102	10	Study Schedule	22
103	11	Study Drugs and Materials	23

104	12	Concomitant Illness(es) and Medication (s)23
105	13	Adverse Events
106		13.1 Definition
107		13.2 Reportable Adverse Events
108		13.3 Non-reportable Adverse Events
109		13.4 Reporting of Adverse Events
110	14	Individual Subject Stopping Criteria
111	15	Criteria for Suspending or Stopping
112	16	Data Safety Monitoring Board (DSMB)
113	17	Precautions/Over-dose
114	18	Risks and Discomforts
115	19	Publication Plan
116	20	Required Support from Novo Nordisk
117	21	Investigational New Drug (IND)
118	22	References
119	Appen	ıdix

121 1. BACKGROUND AND SIGNIFICANCE:

Due to complexity in managing type 1 diabetes (T1D) and hypoglycemia associated with intensive insulin therapy, only 30% of patients with T1D are able to achieve desirable glycemic goal; HbA1c <7% as recommended by the American Diabetes Association ^{1,2}. Moreover, the prevalence of overweight and obesity is increasing among patients with T1D ^{3,4}. Insulin resistance associated with obesity is also believed to be a contributing factor to inadequate glycemic control in T1D ⁵.

128 Hybrid closed-loop systems (HCL), also known as artificial pancreas, where an insulin pump delivers insulin dose based on continuous glucose monitor (CGM) glucose values by means of 129 controller (mathematical) algorithm ⁶. Studies with HCL have been shown to improve glycemic 130 control and reduce hypoglycemia in children, adolescents, and adults with T1D^{7,8,9,10}. The HCL 131 systems are the most advanced diabetes management tools in the armamentarium of diabetes 132 management. The use of the HCL system is increasing among patients with T1D and it is 133 becoming a standard of care in the management of T1D. With increasing use of diabetes 134 technologies such as CGM and the HCL and limitation of HbA1c in managing of diabetes, 135 136 diabetes care is now moving from HbA1c centric to CGM-based metrics such as time-in-range (TIR; sensor glucose between 70-180 mg/dL), time-below range (TBR; sensor glucose <70 137 mg/dL) and time-above range (TAR; sensor glucose >180 mg/dL)¹¹⁻¹³. Studies have also 138 validated TIR as an outcome measure for diabetes clinical trials ¹⁴ and there is a strong inverse 139 relationship between TIR and diabetes complications¹⁵⁻²¹. International consensus recommends 140 TIR>70% with TBR of <4% as optimal glycemic control for most adults with T1D and type 2 141

142 diabetes 11 .

There are three HCL systems currently available in the US; Medtronic 670 G/ 770G, Tandem 143 Control IQ and Omnipod 5²¹⁻²³. Despite use of these most sophisticated diabetes technologies, 144 not every HCL user with T1D is able achieve the recommended HbA1c or TIR goal²⁵⁻²⁷. This is 145 mainly due to inability of the currently available HCL systems to control post-prandial glucose 146 excursions ²⁸. Studies have shown improvement in glycemic control (HbA1c and time-in-range) 147 due to mainly dramatic improvement in overnight glycemic control ⁸⁻¹⁰. The daytime control 148 between adults with T1D using HCL system and controls using insulin pump and CGM is only 149 modestly different ⁸⁻¹⁰. 150

V 3.0_02-06-2023

151 Semaglutide is once a weekly glucagon-like peptide-1 receptor agonist (GLP-1RA). It has been approved for the management of type 2 diabetes and has been shown to improve glycemic 152 153 control and is associated with significant weight loss without increasing hypoglycemia²⁹⁻³¹. GLP-1RA have potential to improve glycemic control in existing HCL uses with inadequately 154 controlled T1D by improving daytime (mainly post-prandial) glycemic control and also may 155 reduce insulin requirement due to weight loss. Small pilot studies have documented 156 157 improvement in mean glucose and time-in-range with short-term use of liraglutide in patients with T1D using HCL ^{32,33}. Moreover, liraglutide had no effect on plasma glucagon during mixed 158 meal tolerance test ³⁴ suggesting GLP-1RA may not blunt glucagon response during 159 hypoglycemia. In addition, Semaglutide has been shown to improve cardiovascular and renal 160 outcomes in patients with type 2 diabetes ³⁵⁻³⁸. Since cardiovascular disease is the leading cause 161 of death in people with T1D ³⁹⁻⁴⁰, there is an interest in exploring effect of GLP-1RA in patients 162 with T1D. Further, as obesity is growing in prevalence among people with T1D, nonalcoholic 163 fatty liver disease (NAFLD) is of concern in this population. Semglutide may improve 164 biomarkers of NAFLD, including hepatic steatosis index (HSI) and fibrosis score (FIB-4), based 165 166 on easily obtained blood markers. Further, assessment of NAFLD by magnetic resonance imaging corresponds well to livery biopsy data on steatosis and fibrosis. Magnetic resonance 167 elastrography (MRE) can be used to assess liver stiffness, a measure of fibrosis, and proton 168 density fat fraction (PDFF), a measure of steatosis. 169

170 Previous studies with the use of GLP-1RA in patients with T1D using HCL systems were limited by small sample size, and shorter duration (only for few days)^{32,33}, and therefore, unable to 171 172 provide evidence for long-term efficacy and safety of GLP-1RA in patients with T1D using HCL systems. Semaglutide is a long-acting GLP-1RA with a once a weekly administration that makes 173 it convenient for patients and shown to have high adherence rate in patients with type 2 diabetes 174 ⁴¹. Weight loss is more pronounced with semaglutide compared to liraglutide ⁴². Therefore, we 175 176 plan to evaluate efficacy and safety of semaglutide as an add-on therapy in adults with T1D who are inadequately controlled despite the use of HCL therapy. 177

178 2. SPECIFIC OBJECTIVE

Primary objective of the study is to evaluate improvement in a composite outcome (CGMmeasured TIR>70% with TBR of <4% and reduction in body weight by 5% at 26 weeks with the

181	use of once weekly semaglutide in inadequately controlled obese adults with T1D using FDA-						
182	approved HCL therapy.						
183							
184	3. RESEARCH DESIGN AND METHODS						
185	3.1.Study Hypothesis						
186	We hypothesize that a significantly higher number of adults with T1D randomized to receive						
187	semaglutide (30-40%) will be able to achieve the primary composite outcome compared to adu	lts					
188	with T1D randomized to the placebo group ($\leq 5\%$).						
189							
190	3.2 Endpoints						
191	Primary and secondary endpoints will be from baseline to week 26.						
192	Primary endpoint						
193	1. Proportion of adults with T1D achieving the composite outcome (CGM-measured						
194	TIR>70% with TBR of <4% and reduction in body weight by 5%) at 26 weeks in the						
195	semaglutide group compared to placebo group.						
196	Secondary endpoints						
197	1. Change in HbA1c						
198	2. Change in mean glucose						
199	3. Percent time spent in CGM-measured glucose range of 70-140 mg/dL (time in tight target						
200	range; TTIR)						
201	4. Percent time spent in CGM-measured glucose $>180 \text{ mg/dL}$ and $>250 \text{ mg/dL}$						
202	5. Percent time spent in CGM-measured glucose<70 mg/dL and <54 mg/dL						
203	6. Change in CGM measured glycemic variability (coefficient of variation)						
204	7. Differences in CGM metrics (mean glucose, TIR, TAR, TBR and CV) by daytime vs						
205	nighttime						
206	8. Percentage of patients achieving HbA1c <7%						
207	9. Percentage of patients achieving TIR >70%						
208	10. Patient reported quality of life						
209	11. Change in insulin dose (total daily dose, units/kg of body weight)						
210	12. Change in weight (kg) and BMI (kg/m ²)						

211	13. Change in modifiable HCL settings. For example, basal-rate, insulin to carb ratio and
212	correction factors for Tandem control-IQ, insulin to carb ratio and active insulin time for
213	Medtronic 670 G/770G and target glucose level, insulin to carb ratio, correction factor and
214	active insulin time for Omnipod 5.
215	14. Severe hypoglycemia and diabetic ketoacidosis episodes
216	15. Change in blood pressure (systolic, diastolic, mean and pulse pressure)
217	16. Change in brachial arterial distensibility (Brach D), augmentation index by radial artery
218	tonometry (pulse wave analysis [PWA] and pulse wave velocity [PWV]), and carotid
219	atherosclerosis by carotid intima media thickness (cIMT).
220	17. Change in lipid parameters (total cholesterol, triglyceride, LDL-C and HDL-C)
221	18. Change in albumin to creatinine ratio (ACR) and renal function (eGFR)
222	19. Change in NAFLD biomarkers, HSI and FIB-4.
223	Exploratory endpoints:
224	1. Change in cardiac and aortic structure and function measured by cardiac magnetic
225	resonance (CMR).
226	2. Change in ectopic fat volumes in the abdomen and around the heart
227	3. Change in liver stiffness and hepatic steatosis as measured by MRE and PDFF.
228	
229	3.3 Study design
230	• This will be a multicenter (four centers), double blind, parallel-group, randomized, placebo
231	controlled clinical trial in obese T1D adults with suboptimal glycemic control despite 3
232	months use of FDA approved HCL technology. Study design is summarized in the Figure
233	below.

234	
235	Figure: An illustration of study design
236	
237	• All participants will be randomized using computer generated block randomization
238	and stratified by clinic research center.
239	• There are up to 6 clinic visits and 3 phone call visits.
240	• CVD assessments will take place at Randomization and at the week 26 visit. Brachial
241	distensibility will be measured using the Dynapulse Pathway device at all centers, and
242	pulse wave velocity (PWV), augmentation index by radial artery tonometry, cIMT
243	and CMR assessments, along with ectopic fat measures of abdominal and pericardial
244	fat, will take place at the BDC and OHSU sites. CVD assessments will be completed
245	at an early discontinuation visit if a study participant drops out.
246	• NAFLD assessments will be done in conjunction with CVD assessments, as part of
247	the blood tests for all participants and as part of the MRI completed for participants at
248	the BDC and OHSU.
249	3.4 Justification for study design
250	• HCL therapy is the most advanced way of managing T1D. Despite HCL use, not all
251	patients with T1D are able to achieve recommended glycemic goals ²⁵⁻²⁷ . Moreover,
252	prevalence of obesity is increasing in this population ³⁻⁴ , which is associated with insulin

resistance and poor glycemic control ⁵. Therefore, adjunctive therapies such as GLP-1RA

- are needed in this population to improve glycemic control as well as improve weightmanagement.
- We propose a randomized, placebo controlled clinical trial, as a well-designed RCT, will
 provide a high level of evidence for efficacy and safety of semaglutide in obese adults
 with T1D.
- We will have a 4 week titration period as recommended by the manufacturer. All subjects will be encouraged to titrate up to 1 mg a week. In case of intolerability, the dose will be titrated back to pre-tolerable dose and subjects will be encouraged to use max tolerable dose of at least 0.5 mg weekly.
- This will be a first clinical trial to provide efficacy and safety of semaglutide in
 suboptimal glycemic control despite on optimal therapeutic regiment in adults with T1D.
- We will try to screen an equal number subjects using different HCL systems (Medtronic
 670/770 G, Tandem control IQ and Omnipod 5) by creating pre-specified screening
 buckets.
- With increasing obesity and higher insulin resistance, cardiovascular risk is higher in people with T1D ⁴³. Semaglutide has been shown to reduce Major Adverse
 Cardiovascular Events (MACE) in patients with type 2 diabetes with high cardiovascular
- risk ^{35,44}. Therefore, it would be of interest to explore change in cardio-renal and NAFLD
- parameters over 26 weeks of treatment with Semaglutide in patients with T1D. Since
- enrolled patients are anticipated to have good glycemic control (due to HCL use) and
- because of the short duration of this clinical trial, we do not anticipate statistically
- significant differences in cardio-renal or NAFLD endpoints. However, these exploratory
- 276 data would be useful for designing future clinical trials to reduce cardiovascular risk in
- 277 people with T1D.
- 278 4. CLINICAL RESEARCH SITES
- The study will be conducted at four US clinical sites. The Barbara Davis Center for Diabeteswill be the lead primary site.
- 281 5. STUDY POPULATION:
- 282 **5.1 Inclusion criteria**
- For an eligible subject, all inclusion criteria must be answered "yes"

284	1) Age >18 and <60 years at screening
285	2) Patients with clinical diagnosis of T1D for at least 12 months
286	3) Patient is on FDA- approved hybrid closed-loop system for \geq 3 months
287	4) Willing to use once weekly semaglutide
288	5) Willing to share devices (HCL system) data uploads
289	6) HbA1c >7.0% and <10.0%
290	7) Body mass index $\geq 30 \text{ kg/m}^2$
291	8) Has current glucagon product to treat severe hypoglycemia
292	9) Has current ketone meters to check ketones
293	10) Ability to provide informed consent before any trial-related activities
294	5.2 Exclusion criteria
295	1) Age ≤ 18 years and ≥ 60 years
296	2) HbA1c ≤ 7.0 % or ≥ 10.0 % at screening
297	3) Less than 12 months of insulin treatment
298	4) Use of unapproved insulin for HCL system. E.g. use of Fiasp in the Tandem Control-IQ
299	system
300	5) Not willing to share the devices (HCL system) data uploads
301	6) Non compatible devices (e.g. pump, CGM or smart phones) for data transfer
302	7) Current use of multiple daily injection or inhaled insulin (Afrezza)
303	8) Patients with T1D using any glucose lowering medications other than insulin at the time
304	of screening
305	9) Pregnancy, breast feeding, and positive pregnancy test during screening
306	10) Women of childbearing age wanting to become pregnant
307	11) Unwilling to use acceptable contraceptive methods (for both men and women) during the
308	trial period
309	12) Current use (\geq 2 weeks of continuous use) of any steroidal medication, or anticipated
310	long-term steroidal treatment (>4 weeks continuously), during the study period
311	13) Use of GLP-1RA or weight loss medications in the past 3 month
312	14) Clinical diagnosis/history of gastroparesis or gastric motility disorders
313	15) Serum triglycerides >500 mg/dL
314	16) Planning for bariatric surgery during the study period

V 3.0_02-06-2023

315	17) eGFR below 45 ml/min/1.73 m ² using CKD-EPI formula
316	18) History of severe hypoglycemia in the previous 3 months
317	19) History of diabetic ketoacidosis requiring hospitalization in the past 3 months
318	20) History of allergy to any form of insulin, GLP-1RA or its excipients
319	21) History of any form of pancreatitis
320	22) History of stroke, myocardial infarction in the past 3 months
321	23) History of congestive heart failure class III or IV
322	24) History of acute or chronic liver disease
323	25) History of malignancy requiring chemotherapy, surgery or radiation in previous 5 years
324	26) Personal or family history of multiple endocrine neoplasia type 2 (MEN-2) or familial
325	thyroid carcinoma or non-familial medullary thyroid carcinoma
326	27) Have a pacemaker, metal implants, or aneurysm clips or weigh >330 lbs (exclusion only
327	if doing MRI and CT scan)
328	28) Use of investigational drugs within 5 half-lives prior to screening
329	29) Participation to other intervention trials during the study period
330	30) Any comorbidities or medical conditions such as severe psychiatric disorder that make a
331	person unfit for the study at the discretion of the investigators
332	5.3 Rationale for inclusion/ exclusion criteria: Only patients using FDA approved HCL system
333	will be included. Many patients with T1D uses do-it-yourself (DIY) system that are not
334	FDA approved and they will be excluded for safety reasons.
335	
336	5.4 Withdrawal criteria
337	• Participation in this research is voluntary. Subjects may withdraw at will at any time.
338	When withdrawing from the study, the participant should let the research team know that
339	he/she wishes to withdraw. A participant may provide the research team with the
340	reason(s) for leaving the study but is not required to provide their reason.
341	• If subject is withdrawn after week-10, we will encourage participants to complete V6
342	(week-26) or complete V6A/P3A.

- Participants will be withdrawn from the study if they become pregnant, actively try to
 become pregnant, develop an allergic reaction to semaglutide or at the judgement of
 investigators due to safety concerns.
- After withdrawal, the participant will be given instructions on how to safely stop using
 study medications and, eventually, on how to correctly and safely return to the previous
 treatment regimen. Instructions are also given on who to contact if there are any
 questions or concerns that arise after study withdrawal.
- At the time of withdrawal, the research participant should let the research team know if
 he/she will allow the use of his/her health information and collected data by the
 researchers.
- 353 5.5 Subject replacement
- Withdrawn subjects will not be replaced. However, re-screening is allowed within recruitment period at the investigator's discretion.

356 **5.5. Reminders**

To minimize loss to follow-up, reminders (text message, phone call or email) will be sent to participants prior to each clinic visits.

359 6. VISIT PROCEDURES:

The details of the study visits and procedures are provided in the Table below. In brief, there
are up to six in-person research visits and up to three phone call visits.

Before screening takes place, subjects will be provided with written information about the 362 trial and the procedures involved. Subjects will be fully informed, both orally and in writing, 363 364 about their responsibilities and rights while participating in the trial, as well as about possible advantages and disadvantages when participating in this trial. Subjects will have the 365 366 opportunity to ask questions and have ample time to consider participation. The informed 367 consent process will take place before the screening visit. Before signing the informed 368 consent, the investigator will make sure that the potential subject has full knowledge of the study processes, and the possibility to withdrawal at any time during the study. 369

- Subjects who wish to enroll in the trial must sign and date the informed consent form for the
- trial before participating in any trial-related procedures. All subjects will be provided with acopy of signed informed consent form.

Trial period	Screening	Randomization	Treatment period			Follow- up	End-of- treatment premature discontinuation	Follow-up premature discontinuation			
Visit (V) or Phone (P)	V1	V2	V3 ⁴	P1	V4 ⁴	P2	V5	V6	P3	V6A ²	P3A ³
Weeks	-2	0	4	6	8	10	20	26	28		2 weeks from V6A
Window (days)	± 7	-	±3	±3	±3	±3	±7	±3	+7		+7
Subject-Related Information/ Assessments											
Informed consent	Х										
Inclusion/Exclusion	Х										
Randomization		Х									
Screen fail/Withdrawal criteria		Х	Х	Х	Х	Х	Х	Х		Х	
Medical history/concomitant medications/ Demography	Х	Х	X	Х	Х	Х	Х	Х		Х	
Trial-related efficacy and safety measures		·									
Height/Weight/BMI/ Waist & Hip circumference	Х	Х	Х		Х		Х	Х		Х	
CVD and NAFLD risk assessment ⁶		Х						Х		Х	
Device downloads (CGM and pump data) ¹	Х	Х	Х		Х		Х	Х		Х	
Questionnaires ⁸	Х				Х		Х	Х		Х	
AE/SAE assessment including assessment for severe hypoglycemia and DKA	X	Х	X	Х	X	X	Х	X	Х	Х	Х
Laboratory		·									
HbA1c (Central)	X			1	Х		Х	Х		Х	
Lipid, CBC and CMP ⁷	Х	Х			Х		Х	Х		Х	
Random urine albumin to creatinine ratio		Х			Х		Х	Х		Х	
Pregnancy test (for premenopausal women)	Х	Х	Х		Х		Х	Х		Х	
Fasting blood and urine collection (only for storage)		Х			Х		Х	Х		Х	
Trial Material											
Drug accountability			Х		X		Х	X		X	
Drug Dispensing ⁵		Х	Х		Х		Х				
Patient handouts/ reminders	X	Х	Х	Х	Х	Х	Х	Х		Х	

¹patients own devices. ²V6A to be scheduled at the discontinuation of the trial product; ³P3A to be conducted for those who complete their V6A. ⁴V3 and V4 can be done remotely if needed based on local regulatory situation such as pandemic related closure. ⁵In a situation needing subsequent visit to be done remotely, you can dispense extra IMPs. ⁶ CVD risk assessment includes brachial artery distensibility, pulse wave analysis and velocity, cIMT and CMR, MRE and PDFF. Brachial artery distensibility at all 4 sites. Other cardiac measures at BDC and OHSU sites. ⁷At screening, non-fasting plasma triglycerides and CMP will be measured. Randomization onwards, fasting lipids, CBC and CMP with be measured. ⁸ Questionnaires such as GOLD, QOL measures.

373	6.1 Screening
374	 The subjects will be assigned a unique subject number, which will remain the same
375	throughout the trial. The subject number will consist of 3 digits: first digit is site
376	number (e.g. 1) followed by two digit subject number (e.g. 01).
377	 All subjects will undergo review of inclusion and exclusion criteria. If any inclusion
378	criteria is answered 'no' or any exclusion criteria is answered 'yes', the subject is a
379	screen failure, and no further assessment will take place.
380	 Patients will be told the importance of compliance of the pre-set study visit time
381	schedules
382	 All subjects will be assessed and reeducated on diabetes self-management, appropriate
383	and safe use of their own diabetes devices, and its trouble shooting, prevention and
384	treatment of hypoglycemia and sick day management.
385	• All subjects must use appropriate insulin that is approved for their HCL system. For
386	example, insulin Fiasp is not allowed to be used in Tandem Control-IQ HCL system.
387	6.2. Randomization
388	 Randomization visit will be done within 2 weeks from screening visit.
389	 Subjects will be randomized using computer generated randomization scheme to receive
390	either semaglutide or placebo (1:1 randomization). Patients or investigators will be
391	blinded to either treatment modalities.
392	• A pre-designated study personnel will be in-charge of allocating study drugs and
393	keeping track of study drug distribution across all the sites.
394	• A Directions For Use (DFU) will be provided by Novo Nordisk and will be given to
395	each patient at the first dispensing visit (dosing details in Section 6.3)
396	6.3. Semaglutide dose, titration, and insulin adjustment
397	 Starting dose of semaglutide is 0.25 mg subcutaneously once a week.
398	• All patients will be provided with verbal and written education on the use of
399	semaglutide pen
400	• Dose will be titrated after 4 weeks to 0.5 mg/ week and after 8 weeks to 1 mg/week. In
401	case of intolerance to the medication, the dose can be scaled back. All patients will be
402	encouraged to use maximally tolerable dose up to 1 mg/week.

403	• At randomization, and during drug titration (week 4 and week 8), study investigator or
404	designated study personnel must review HCL settings, adjust it per the guidance
405	provided in the Appendix A, and provide appropriate education to minimize
406	hypoglycemia. HCL adjustment will be recorded in the study database (Redcap).
407	 To achieve desirable glycemic control (>70% TIR and <4% TBR), HCL settings may
408	be adjusted by the investigators per the guidance provided in the Appendix C after
409	patient has reached the maximum tolerable dose (after week 10 or P2 study visit). HCL
410	adjustment will be recorded in the study database (Redcap).
411	6.4. Clinic and phone visits
412	 All study procedures must be conducted as mentioned in the procedure table above.
413	• In a situation (such as pandemic-related restrictions) where an in-person visit cannot be
414	possible, research visits (V3 and V4) can be conducted remotely. A study procedure
415	manual will be provided to all sites.
416	• If a subject is withdrawn after week-10, participants will be encouraged to complete V6
417	(week-26) or complete V6A/P3A
418	
419	6.5 Un-blinding
420	• The subject randomization list and IMP dispensation details will be stored at the BDC.
421	Subject number will be matched with IMP assigned to the subject.
422	 The designated independent personnel unblinded to the study drugs (Sarit Polsky,
423	MD)will perform any un-blinding of study participants.
424	 Un-blinding can be performed under the following circumstances:
425	• Treatment of an individual in a medical emergency where knowledge of the
426	treatment allocation is required.
427	• Treatment of an individual for an AE.
428	• In the event of a SUSAR.
429	• In the event that the participant's study medication is accidentally taken by a
430	member of their household e.g. a child.
431	• If required by the DSMB committee or regulatory agencies.
432	

433 7. STATISTICAL PLAN

434 **7.1 Preliminary data for sample size calculation**

In SUSTAIN 1, 4 and 5 clinical trials, Semaglutide 0.5 mg and 1 mg per week for 30 weeks in 435 patients with type 2 diabetes resulted in 2.5-4.5 kg, and 3.5-6 kg weight loss compared to 436 baseline $^{44-46}$. 30-40% of patients with type 2 diabetes with baseline BMI between 30-35 kg/m² 437 achieved weight loss of >5% using Semaglutide 0.5 mg weekly compared to comparator and 438 45-60% had weight loss >5% using Semaglutide 1 mg weekly compared to comparator 47 . 439 440 Based on this data, we conservatively estimated that 30% of patients with T1D using HCL and randomized to semaglutide with BMI >30 kg/m2 will achieve >5% of weight loss at 26 weeks 441 from baseline. None of the clinical trials in T1D demonstrated weight loss with the use of HCL 442 therapy ⁸⁻¹⁰ and therefore, we don't expect adults with T1D using HCL and randomized to 443 444 placebo to lose >5% of body weight. 445 Our previous real-life study of adults with T1D using Medtronic 670 G had mean percent TIR of 67%±1.2% after 3 months of using HCL. In our clinical experience of using semaglutide in 446 adults with T1D with mean HbA1c of 7.7±1.4 at baseline had drop in HbA1c to 7.2±1.1 after 3 447 months (unpublished data). Each 5% improvement in TIR approximates reduction in HbA1c by 448 0.3-0.4% ^{48, 49} and therefore, based on our preliminary data, we expect that greater percentage of 449

adults with T1D randomized to semaglutide would have improvement in TIR by at least 5%

- than adults with T1D randomized to placebo. We assumed that >75% of adults with T1D using
- 452 HCL and randomized to semaglutide would achieve TIR >70%. Moreover, most adults with
- T1D using HCL system have TBR <4% and GLP-1 analogs have not found to increase TBR.
- 454 Therefore, we expect that >75% of adults with T1D on HCL and randomized to either
- semaglutide or placebo would have TBR <4%.
- 456 Considering the data from the above studies, we anticipate that at least 30% of adults with T1D
- 457 using HCL and randomized to semaglutide will achieve >5% weight loss and at least 75% of
- these will achieve TIR >70% and TBR <4%. Therefore, we estimate that it would be clinically
- 459 meaningful if at least 15% of those in the treatment group will achieve the composite outcome
- 460 compared to 5% of adults randomized to placebo.
- 461 **7.2** Sample size calculation

462 Considering 10% screen failure rate and 20% drop out, we plan to screen 80 adults with T1D

463 (20 per center) in order to randomize 72 adults with T1D and expect 64 (32 per group) to

complete the study, including an early completion visit. Based on the method suggested by 464 Cocks and Torgeson⁵⁰ to determine sample sizes for pilot randomized control trials, we estimate 465 that our pilot sample of 32 completers per group will provide sufficient confidence to detect a 466 difference in the proportion meeting the composite endpoint of 6.2% at an 80% confidence 467 468 interval and 9.5% at a 90% confidence interval, assuming we feel a clinically meaningful difference is 5% in the control group vs. 15% in the treatment group 469

470

Power and Sample Size for secondary endpoints: This pilot study will assess the effect of 471 semaglutide on secondary endpoints, including surrogate CVD, NAFLD and renal markers. For 472 lipids, blood pressure, BrachD, eGFR and ACR, we expect to have 80 screened, 72 enrolled and 473 64 completed (32 per group) at either 26 weeks or early completion. With a sample size of 68 474 participants with completion of at least some follow-up visits (V4, V5, or V6/V6A), we will have 475 80% power to detect a 10% greater decrease in HSI or FIB-4 with semaglutide treatment 476 compared the placebo group. For cIMT, PWV, PWA and CMR, we expect to have 40 screened, 477 36 enrolled and 32 completed (16 per group) participants at the Barbara Davis Center and OHSU 478 sites (with all participants who drop out encouraged to complete an early discontinuation visit). 479 Using 80% confidence limits as outlined by Cocks and Torgerson⁵⁰, a pilot sample of 72 would 480 provide an upper 80% confidence limit of 0.1984, corresponding to a standardized effect size in 481 482 the main trial of 0.20, which is considered a small effect size. A pilot sample of 32 would provide an upper 80% confidence limit of 0.2976, corresponding to an effect size for the main trial of 483 0.30, which is considered a small effect size. For example, an HbA1c improvement of 0.4% is 484 considered clinically meaningful, and the upper 80% confidence interval for our sample size is 485 486 0.362. Similarly, weight loss reduced carotid-femoral PWV on average by 0.35 m/s in a metaanalysis ⁵¹. Specifically for selected glycemic, renal and CV markers, this sample will be 487 488 sufficient to detect the following upper confidence limits:

Parameter	Sample Size	SD for change in parameter	Upper 80% confidence limit
HbA1c	72	1.2	0.362
TIR	72	10	3.02
eGFR	72	21.31	4.52
Log Urinary ACR	72	1.07	0.227
cIMT	32	0.169	0.051
PWV	32	1.1	0.332

V 3.0_02-06-2023

489	7.3	Evaluability of subjects
490		 We will prepare two data sets for the analysis.
491		 Per-Protocol (PP) analysis set: All exposed subjects who complete the 26-week trial
492		without significantly violating the main aspects of the protocol. The Per-Protocol set will
493		be used for sensitivity analyses.
494		• Intention to treat (ITT) analysis set: All randomized subjects exposed to at least one dose
495		of trial product and completed the visit at week 4. ITT data set will be used for efficacy
496		and safety analysis.
497	7 4	Analyzaanlan
498	/.4	
499		• All variables will be tested for normality with the Shapiro-Wilk Test and/or the
500		Kolmogorov-Smirnov Test. Continuous and normally distributed data will be presented
501		as mean/SD and categorical data will be presented as N/%. Non-normally distributed
502		variables will be analyzed using non-parametric tests.
503		 The primary endpoint (differences in proportion of patients achieving composite
504		outcomes) will be compared using repeated measures models at each visit between 4 and
505		26 weeks between two groups. Non-linear mixed effects models will be used to examine
506		the odds of achieving the composite outcome for the treatment vs. placebo group while
507		adjusting for pre-specified covariates, baseline A1c and BMI. Baseline A1c is known to
508		affect TIR (better improvement in TIR in those with higher A1c). Similarly, higher BMI
509		may affect weight loss. Therefore, we decided to use these covariates for adjustment.
510		Sustain 7 post hoc analysis suggested that efficacy of semaglutide on glycemic control
511		and weight loss remains the same regardless of baseline age, diabetes duration or sex.
512		Therefore, we did not include those variables in our pre-specified adjustment ⁵² .
513		• For secondary endpoints, the change in outcomes will be examined between baseline and
514		26 weeks, and changes in continuous variables such as A1c, mean glucose and CGM,
515		NAFLD (HSI and FIB-4) and cardio-renal outcomes (eGFR, ACR, blood pressure, lipids)
516		that are collected at multiple timepoints will be compared using linear mixed models to
517		account for missing data. Changes in categorical variables with multiple timepoints will
518		be examined using generalized linear models with repeated measures.

519	 For exploratory endpoints, the changes in cardiac structure and function, liver stiffness
520	and steatosis, and ectopic fat deposition, will be examined between baseline and 26
521	weeks using liner mixed models adjusting for potential change in confounders such as
522	change in blood pressure or lipid lowering medications.
523	• For safety analysis (such as AE/SAE), the entire ITT population will be included. A table
524	will be populated with frequency of system wide adverse events between two groups.
525	Differences in safety outcomes will be examined between ITT groups using Chi-Square
526	tests for categorical outcomes (any AE/SAE, severe hypoglycemia, DKA) and t-tests for
527	continuous variables such as time spent in hypoglycemia on CGM.
528	
529	8. DATA HANDLING AND RECORD KEEPING
530	8.1 Data management
531	 BDC will be the main site and coordinating center for other sites.
532	 Colorado Multiple Institutional Review Board (COMIRB) will serve as the IRB for the
533	Barbara Davis Center. The other sites will use their own IRB.
534	• The data and specimens obtained from the subject will be identified by subject number.
535	• The principal investigator will retain all data generated during the study. Data management
536	is the responsibility of the investigator.
537	• All electronic data from all four sites will be stored at the BDC, in a de-identified manner,
538	which are secured by the University of Colorado servers. The data will be accessible only by
539	the study team and if transfer of data needed, appropriate measures, including encryption of
540	data files will be used to ensure security and subject confidentiality.
541	 The records will be stored securely and kept for minimum of 9 years per the Standards
542	Operating Procedures (SOP) of the University of Colorado
543	(https://research.cuanschutz.edu/comirb/home/guidance-and-policies)
544	8.2 Source data
545	 Source documents will be kept with the site investigators per local regulatory
546	requirements. Source data must be available to the study monitors or regulatory agencies such
547	as US FDA whenever asked for.
548	 All source data must be entered in the study data database electronically.

549	9.	ETHICS
550	•	The trial will be conducted in compliance with this protocol, ICH GCP, the University of
551		Colorado COMIRB research policy, local site regulatory agencies, and in accordance with
552		the Declaration of Helsinki.
553	•	The clinical trial protocol, consent form and appropriate study documents will be submitted
554		to to COMIRB for the approval before the start of any study related activity.
555	•	Once the protocol is approved by COMIRB for the BDC and the IRBs for the other sites,
556		the study team will be allowed to contact potential subjects.
557	•	Before any trial-related activity, the investigator/study team will give the subject verbal and
558		written information about the trial and the procedures involved in a form that the subject
559		can read and understand.
560	•	The subjects will be fully informed of their rights and responsibilities while participating in
561		the trial as well as possible disadvantages of being treated with the trial products.
562	•	The investigator will ensure the subject is given ample time to come to a decision whether
563		to participate in the trial.
564	•	A voluntary signed and personally dated informed consent will be obtained from the
565		subject before any trial-related activity.
566	•	The process of informed consent process will occur in a clinical research place. The subject
567		will sign the informed consent process in the presence of the investigator and witness. The
568		confidentiality and HIPAA will be handled per the University of Colorado and local site
569		regulatory research policies.
570		

571 **10. STUDY SCHEDULE**

Study timeline is illustrated below. To reduce study start time, we will start IRB and
 subcontracting with other sites simulatenously.

576 11. STUDY DRUGS AND MATERIALS:

- 577 Patients will be using their own insulin, and diabetes devices (HCL system and related supplies)
- 578 <u>Study medications</u>
- 579 Injection semaglutide 1.34 mg/mL
- Injection placebo (Clinic variant of marked product*)
- 581 <u>Packaging and labelling of study medication(s)</u>
- The BDC will receive study medications from Novo Nordisk A/S.
- **BDC** pharmacist/designated person will distribute the drugs/placebo to other sites.
- All sites will be provided guidance (study procedure manual) on medication packaging,
 labelling, storage and distribution.
- All subjects will be provided written and verbal education on taking study medications
 appropriately.
- 588 <u>Storage and drug accountability of study medication(s)</u>
- All the study medication (including placebo) will be assumed as semaglutide and stored
 according to the approved label.
- The temperature log will be monitored at the site and any temperature fluctuation will be
 reported as deviation.
- 593 <u>Auxiliary supply</u>
- Pen needles will be provided to all subjects.
- 595

596 12. CONCOMITANT ILLNESS(ES) AND MEDICATION(S)

- Concomitant illness is any illness that is present at the start of the trial (*i.e. at the first visit*).
- Concomitant medication is any medication other than the trial product(s) that are consumed during
 the trial.
- Details of all concomitant illnesses and medication will be recorded per protocol. All sites will be
- 601 provided with source documents and instructions on recording concomitant illnesses and
- 602 medications.
- 603

^{604*} The clinic variant of the cartridge is produced with an army green closure cap compared to a dust green closure cap605in the marketed Ozempic® product. Ozempic® are marketed in different pen variants for different intended dosing606regimens. The push button and cartridge holder are light grey, and the pen can be found in both a 1.5 ml and 3 ml607variant, dependent on the country. The clinical pen can be found in one variant to support 0.25mg, 0.5mg and 1mg608doses in a 1.5 ml variant. The push button and cartridge holder are light brown. Neither closure cap nor the pen is in609contact with the product and the differences in colours have no impact on the stability of the product.

610 **13. ADVERSE EVENTS**

611 **13.1 Definition**

Adverse event (AE)	Any untoward medical occurrence associated with the use of a drug whether considered drug related or not. AE can be unfavorable symptoms, sign (abnormality on physical exam or laboratory findings) or disease temporarily associated with the use of products whether or not related to the products.
Serious adverse event (SAE)	 An adverse event or suspected adverse reaction is considered "serious" if, in the view of the investigator, it results in any of the following outcomes: Results in death, or, Is life-threatening, or, Requires inpatient hospitalization or prolongation of existing hospitalization, or, Results in persistent or significant disability/incapacity, or, Is a congenital anomaly/birth defect, Is a medically important event that may not result in death, be life threatening or require hospitalization may be considered an SAE when - based on appropriate medical judgement -they may jeopardize the subject and may require medical or surgical intervention to prevent one of the outcomes listed in the definition of SAE Suspected transmission of an infectious agent should be considered as an
Adverse Drug Reaction (ADR)	An Adverse Reaction is an Adverse Event for which the causal relationship between the Product and the Adverse Event is suspected
Serious Adverse Reaction (SAR)	An Adverse event that fulfills both the criteria for a Serious Adverse event and the criteria for an Adverse Reaction.
Medical event of special interest (MESI)	 A MESI is an event, which, in the evaluation of safety, has a special focus. A MESI is an AE (SAE or non-serious AE) which fulfils one or more of the below defined MESI criteria. Medication errors concerning trial products: Administration of wrong drug Wrong route of administration, such as intramuscular instead of subcutaneous Accidental administration of a lower or higher dose than intended, however the administered dose must deviate from the intended dose to an extent where clinical consequences for the trial subject were likely to happen as judged by the investigator, although not necessarily did happen. Overdose and missed insulin injection resulting in severe hypoglycemia or hyperglycemia are considered as AE or SAE depending on severity.
Suspected Unexpected Serious Adverse Reactions (SUSAR)	An unexpected adverse reaction (UAR) is an adverse reaction that is not consistent with the product information in the summary of product characteristics (SPC, i.e.US prescribing information). The current version or any updated if available during the clinical trial for US prescribing

	information for study drugs will be used as SPC. If UAR is severe end	
	to define as SAE is called as SUSAR.	
Technical complaint	A technical complaint is any written, electronic, or oral communication	
	that alleges product (medicine or device) defects. The technical complaint	
	may be associated with an AE but does not concern the AE itself.	

612 13.2 Reportable AE for Hypoglycemia and Hyperglycemia/Diabetic Ketoacidosis

- *Hypoglycemia*: Hypoglycemia is common in people with T1D. Only severe
 hypoglycemia defined as "hypoglycemia event requiring medical assistance of another
 person due to altered consciousness, and required another person to actively administer
- 616 carbohydrate, glucagon, or other resuscitative actions" is reportable adverse event. This
- 617 means that the participant was impaired cognitively to the point that he/she was unable to
- 618 treat himself/herself, was unable to verbalize his/ her needs, was incoherent, disoriented,
- and/or combative, or experienced seizure or coma. These episodes may be associated
- 620 with sufficient neuroglycopenia to induce seizure or coma. If plasma glucose
- 621 measurements are not available during such an event, neurological recovery attributable
- to the restoration of plasma glucose to normal is considered sufficient evidence that the
- event was induced by a low plasma glucose concentration.
- *Hyperglycemic events/Diabetic Ketoacidosis (DKA)*: Hyperglycemic event is only
 reportable as an adverse event when one of the following four criteria is met:
- 626 1) The event involved DKA, as defined by the Diabetes Control and Complication
 627 Trial (DCCT) and described here:
 - Hyperglycemic events are classified as DKA if the following are present (meeting all 4 criteria)
- a) Symptoms such as polyuria, polydipsia, nausea or vomiting
 b) Serum ketones >1.5 mmol/L or large/moderate urine ketones
 c) Either arterial PH <7.30 or venous PH <7.24 or serum bicarbonate
 <15
 d) Treatment provided in a health care facility
- 6356352) Evaluation or treatment was obtained at a health care provider facility for an acute636event involving hyperglycemia or ketosis

628

637	3) Blood ketone level \geq 1.5 mmol/L and communication occurred with a health care
638	provider at the time of the event
639	4) Blood ketone level \geq 2.5 mmol/L even if there was no communication with a
640	health care provider
641	13.3 Non-reportable adverse events
642	 Hypoglycemia or hyperglycemia events not meeting above criteria are not required to be
643	reported as an adverse event
644	 Patients' own devices (e.g. insulin pump, CGM, BG meters) related issues and skin issues
645	arise from the use of these devices (such as skin rash due to adhesive or infusion site
646	issues) are not reportable unless the event meets the definition of an SAE.
647	13.4 Reporting of adverse events
648	• All events meeting the definition of an AE must be collected and reported. This includes
649	events from the first trial-related activity after the subject has signed the informed consent
650	until the end of the post-treatment follow-up period.
651	 Once an AE is identified, assessment for severity (mild, moderate or severe), causality
652	(probable, possible or unlikely) and outcome of an AE (recovered, recovering, recovered
653	with sequelae, not recovered, fatal or unknown) must be provided. Probable is defined as
654	good reason and sufficient documentation to assume a causal relationship. Possible is
655	defined as a causal relationship is conceivable and cannot be dismissed. Unlikely is defined
656	as the event is most likely related to etiology other than the trial product.
657	 Since patients are using their own diabetes devices, we do not intend to collect device
658	issues. However, if a device issue results in SAE, it must be reported.
659	• The investigator is responsible for reporting all AE to their IRB within five business days
660	once they are aware of AE.
661	 All non-severe and severe AE will be followed until the end of the study
662	 Subjects must be instructed to notify the investigator immediately if they become
663	pregnant. If a subject becomes pregnant during the study, the subject will be dropped from
664	the study and followed until birth for pregnancy outcomes Pregnancy will be reported
665	as an AE (or SAE if fulfills the criteria of SAE). The sponsor-investigator is responsible

for reporting pregnancy to Novo Nordisk and reporting will occur within same timelines
described below. Pregnancy complications will be recorded as an AE and if the infant has
a congenital abnormality or birth defect, it will be reported and notified to the IRB

Site investigators are responsible to notify their IRB within 24 hours once they are aware
of an SAE.

Sponsor-Investigators will be responsible for notifying COMIRB, DSMB, the FDA and
 Novo Nordisk of an AE/SAE within the stipulated time frame of each agencies.

Sponsor-investigator will report to NovoNordisk all SAEs, SUSARs and SADRs within
15 days of the sponsor-investigator becoming aware of such adverse events. The SponsorInvestigator will provide the following information to NovoNordisk: study name, patient
initials, sex, age, event (probable diagnosis), drug name (Semaglutide/placebo) and
reporter identification (name or initials) in addition to a description of the AE events such
as causality and outcome.

- Follow-up of adverse events: Investigator must provide adequate medical care to study 679 subject for any study-related adverse events including clinically significant laboratory 680 681 values related to the study and medical care of the subjects should be provided regardless of their insurance status. AE classified as serious or possibly/probably related to trial drug 682 683 must be followed until the subject has been recovered and all queries have been resolved. For cases of chronic conditions follow-up until the outcome category is "recovered" is not 684 685 required, as these cases can be closed with an outcome of "recovering" or "not recovered". All other adverse events must be followed until the outcome of the event is "recovering" 686 (for chronic conditions), or "recovered" or until the end of the post-treatment follow-up 687 stated in the protocol, whichever comes first, and until all queries related to these AEs 688 689 have been resolved.
- 690

691 14. Individual subject stopping criteria

- 692 Study drug administration may be stopped for any of the following reasons:
- 1) Two or more episodes of severe hypoglycemia as defined in the section 13.2
- 694 2) Two or more DKA events not related to device malfunction. Definition of DKA is
 695 detailed in the section 13.2

- 696 3) Investigator decides that, in the interest of the patient, it is not medically acceptable to697 continue participation in the study
- 698 **15.** Criteria for suspending or stopping the study
- 699 Greater than 10 cases of severe hypoglycemia or greater than 5 cases of DKA that are not
- due to device malfunction. These criteria are based on exceeding the average incidence of
- severe hypoglycemia (11.8%) and DKA (4.8%) in patients with T1D as reported in the Type
- ⁷⁰² 1 Diabetes Exchange Clinic Registry ⁵³.

703 16. Data Safety Monitoring Board (DSMB)

- A DSBM consisting of three members (two clinicians and one statistician) will independently monitor the study, including adverse events and study drug or device issues with potential to impact participant safety. A meeting will be held at the beginning of the study, and every six months between the study team (BDC investigators) and the DSMB to review any adverse events. Following each safety review, a summary of recommendation from the DSMB will be collected.
- 710 17. Precautions/over-dosage
- 711 Inappropriate medication dose can cause severe hypoglycemia or hyperglycemia. The
- education on recognition of hypoglycemia or hyperglycemia and its treatment will be
- 713 provided at screening and as needed during the study.
- 714 18. Risks and Discomforts
- a) Blood Drawing Risks
- The risks of drawing blood from a vein include temporary discomfort from the needle stick
- 717 (common), bruising (common), excessive bleeding (unlikely), lightheadedness (rare),
- 718 infection (rare), and fainting (rare).
- 719
- b) Study procedure related discomfort
- The participant may feel some discomfort during height, weight, waist measurement and
- blood pressure measurements. All care will be taken to reduce discomfort.
- c) Side-effects related to semaglutide

Semaglutide is a long-acting glucagon like peptide-1 (GLP-1). The most common adverse
reactions, reported in ≥5% of patients treated with semaglutide are nausea, vomiting, diarrhea,
abdominal pain, and constipation. Nausea/ vomiting can sometimes lead to dehydration and
acute kidney injury. Semaglutide causes a delay of gastric emptying and has the potential to
influence the absorption of concomitantly administered oral medications, so caution should be
exercised. Acute and chronic pancreatitis have been reported in clinical studies.
Hypersensitive reactions have also been reported. Semaglutide is contraindicated in patients

with a history or family history of medullary thyroid cancer and in patients with multiple
endocrine neoplasia type 2 (MEN-2)

d) Risk of Hypoglycemia (Low Blood Sugar)

As with any person with diabetes who uses insulin, there is always a risk of having low blood 734 735 sugar (hypoglycemia). GLP-1RA such as semaglutide is known to improve insulin action and therefore, may increase risk for low blood sugar. Symptoms of low blood sugar can include 736 737 sweating, jitteriness, and not feeling well. There is also the possibility of fainting or seizures (convulsions), brain damage, or death with a very low blood sugar. Since we will be closely 738 739 monitoring participants during this study, a serious low blood sugar is less likely to occur in any study participant. Even if a low blood sugar does occur, it usually goes away quickly with 740 treatment (carbohydrates) that raises the blood sugar. A severe low blood sugar may require 741 that a participant get an injection of glucagon and/or have emergency services to help raise 742 743 his/her blood glucose level. Hypoglycemia risk mitigation plan is discussed in the 744 Appendices.

e) Risk of Hyperglycemia (High Blood Sugar)

Hyperglycemia usually does not cause many obvious symptoms, but participants may become

thirsty, fatigued, or have a higher level of sugar in their urine. In severe cases of

hyperglycemia, diabetic ketoacidosis (DKA) or coma may occur. Hyperglycemia leading to

749 DKA can lead to renal failure (kidney failure), cardiac arrhythmia (irregular heartbeat),

750 myocardial infarction (heart attack), rhabdomyolysis (muscle breakdown), and even death. A

serious effect from hyperglycemia is not expected to occur in any study participant, as we will

be monitoring blood glucose levels frequently.

753 f) Psychosocial Questionnaires

- Answering questionnaires about thoughts, concerns, and distress related to diabetes and general quality of life assessments may result in undesired thought processes and/or emotions. These feelings may be transitory, recurrent, or permanent though most risks are minimal/transitory.
- g) Cardiac magnetic resonance imaging during the MRI exam, some participants may
 experience claustrophobia and discomfort, due to being enclosed in a small tube. In order to
 minimize the risk of this occurring, potential participants will be screened for claustrophobia or
 prior issues undergoing MRI and excluded if they have experienced claustrophobia or had other
 negative experiences with MRI. In addition, participants will be excluded if they have a
 pacemaker, metal implants or aneurysm clips.
- h) CT Scan Participants will undergo a spiral CT scan to measure pericardial and intraabdominal fat, which will involve exposure to a low dose of radiation. A pregnancy test will
 be administered for all women of childbearing potential.

766 i) Unknown Risks

In any study, there may be additional risks that we do not know about at this time. This is not likely but is always a possibility. If we become aware of any new risks, participants will be told about them. They will be able to decide if they want to continue to participate in this study. If a treatment or procedure has increased risks because it was not done according to study procedures due to error, participants will be informed, and the necessary steps will be taken to care for them.

j) Confidentiality

774 There is a risk of a breach in confidentiality. Thus, a confidential subject database will be established to maintain study data. Data will be entered into REDCap (Research Electronic 775 776 Data Capture). REDCap is an internal secure, computerized database system at the University of Colorado Denver. This system allows data entry, survey/questionnaire building, data 777 778 exportation to statistical packages, and is HIPAA compliant. Each subject will be assigned an identification number, which will be used to code and identify all of that subject's records. 779 780 This will avoid the continual use of subject names. REDCap surveys can be sent to study participants via e-mail for direct input into the database. All study data will be locked in the 781

PIs' offices and all relevant computer study files will be input on staff computers, which are

783 password protected and contain encryption software. Data storage will be on a secured server maintained by the University of Colorado. The server is backed up nightly and a copy of the 784 785 back-up file is kept off site in a secure facility. Data access will be limited to study personnel. Study results may be presented in the form of posters, abstracts, oral presentations, or 786 publications at academic meetings or in journals. In all forms of study result reporting, subject 787 identification will not be disclosed. A study subject may access his/her protected health 788 information at any time by requesting said information in writing of the investigator. The 789 investigative team has been trained in IRB and HIPAA compliance issues and will maintain 790 confidentiality and protect health information. The above-stated procedures have been highly 791 effective in preventing breaches of patient confidentiality for the prior and current research 792 studies in which the PI has been and continues to be involved. 793

794 **19. PUBLICATION PLAN**

795 The results will be presented at various diabetes meetings such as American Diabetes 796 Association and European Association for the Study of Diabetes (EASD) annual meetings. 797 We also plan to publish this manuscript in a peer-reviewed index high impact journal in the

field of clinical diabetes 798

799 **20. REOUIRED SUPPORT FROM NOVO NORDISK**

- Semaglutide and identical placebo pens
- Financial support to conduct this study will be provided by the JDRF.
- 801 802

800

21. INVESTIGATIONAL NEW DRUG (IND) 803

- 804 Semaglutide use in T1D will be off-label. Therefore, the investigator will obtain IND before
- any clinical trial related activities [IND 162627]. 805

22. REFERENCES

- Miller KM, Foster NC, Beck RW, et al. Current state of type 1 diabetes treatment in the
 U.S.: updated data from the T1D Exchange clinic registry. Diabetes care 2015;38(6):971 8. (In eng). DOI: 10.2337/dc15-0078.
- 811 2. Wood JR, Miller KM, Maahs DM, et al. Most youth with type 1 diabetes in the T1D
- Exchange Clinic Registry do not meet American Diabetes Association or International
 Society for Pediatric and Adolescent Diabetes clinical guidelines. Diabetes care
 2013;36(7):2035-7. (In eng). DOI: 10.2337/dc12-1959.
- Shah VN, Bailey R, Wu M, et al. Risk Factors for Cardiovascular Disease (CVD) in
 Adults with Type 1 Diabetes: Findings from Prospective Real-life T1D Exchange
 Registry. The Journal of clinical endocrinology and metabolism 2020;105(5):e2032-8. (In
 eng). DOI: 10.1210/clinem/dgaa015.
- Shah VN, Grimsmann JM, Foster NC, et al. Undertreatment of cardiovascular risk factors in the type 1 diabetes exchange clinic network (United States) and the prospective diabetes follow-up (Germany/Austria) registries. Diabetes Obes Metab 2020;22(9):1577-1585. (In eng). DOI: 10.1111/dom.14069.
- Martyn J AJ, Kaneki M, Yasuhara S, Warner David S, Warner Mark A. Obesity-induced
 Insulin Resistance and Hyperglycemia: Etiologic Factors and Molecular Mechanisms.
 Anesthesiology 2008;109(1):137-148. DOI: 10.1097/ALN.0b013e3181799d45.
- 826 6. Shah VN, Shoskes A, Tawfik B, Garg SK. Closed-loop system in the management of diabetes: past, present, and future. Diabetes technology & therapeutics 2014;16(8):477828 90. (In eng). DOI: 10.1089/dia.2014.0193.
- 7. Tauschmann M, Thabit H, Bally L, et al. Closed-loop insulin delivery in suboptimally
 controlled type 1 diabetes: a multicentre, 12-week randomised trial. Lancet (London,
 England) 2018;392(10155):1321-1329. (In eng). DOI: 10.1016/s0140-6736(18)31947-0.
- 8. Bergenstal RM, Garg S, Weinzimer SA, et al. Safety of a Hybrid Closed-Loop Insulin
 Delivery System in Patients With Type 1 Diabetes. Jama 2016;316(13):1407-1408. (In
 eng). DOI: 10.1001/jama.2016.11708.
- Brown SA, Kovatchev BP, Raghinaru D, et al. Six-Month Randomized, Multicenter Trial
 of Closed-Loop Control in Type 1 Diabetes. The New England journal of medicine
 2019;381(18):1707-1717. (In eng). DOI: 10.1056/NEJMoa1907863.
- Brown SA, Forlenza GP, Bode BW et al. Multicenter Trial of a Tubeless, On-Body
 Automated Insulin Delivery System With Customizable Glycemic Targets in Pediatric
 and Adult Participants With Type 1 Diabetes. Diabetes Care. 2021 Jul;44(7):1630-1640.
- 840 and Adult Participants with Type T Diabetes. Diabetes Care. 2021 Jul,44(7):1050-1040.
 841 11. Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose
- Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019;42(8):1593-1603. (In eng). DOI: 10.2337/dci19-0028.
- Beck RW, Connor CG, Mullen DM, Wesley DM, Bergenstal RM. The Fallacy of
 Average: How Using HbA(1c) Alone to Assess Glycemic Control Can Be Misleading.
 Diabetes care 2017;40(8):994-999. (In eng). DOI: 10.2337/dc17-0636.
- 848 13. Bergenstal RM, Beck RW, Close KL, et al. Glucose Management Indicator (GMI): A
- New Term for Estimating A1C From Continuous Glucose Monitoring. Diabetes care 2018;41(11):2275-2280. (In eng). DOI: 10.2337/dc18-1581.

- Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes care 2019;42(3):400-405. (In eng). DOI: 10.2337/dc18-1444.
- B54 15. Guo Q, Zang P, Xu S, et al. Time in Range, as a Novel Metric of Glycemic Control, Is
 Reversely Associated with Presence of Diabetic Cardiovascular Autonomic Neuropathy
 Independent of HbA1c in Chinese Type 2 Diabetes. Journal of diabetes research
 2020;2020:5817074. (In eng). DOI: 10.1155/2020/5817074.
- B58 16. Guo QY, Lu B, Guo ZH, et al. Continuous glucose monitoring defined time-in-range is associated with sudomotor dysfunction in type 2 diabetes. World J Diabetes
 B60 2020;11(11):489-500. (In eng). DOI: 10.4239/wjd.v11.i11.489.
- 17. Kim MY, Kim G, Park JY, et al. The Association Between Continuous Glucose
 Monitoring-Derived Metrics and Cardiovascular Autonomic Neuropathy in Outpatients
 with Type 2 Diabetes. Diabetes technology & therapeutics 2021 (In eng). DOI:
 10.1089/dia.2020.0599.
- 18. Li J, Li Y, Ma W, et al. Association of Time in Range levels with Lower Extremity
 Arterial Disease in patients with type 2 diabetes. Diabetes & metabolic syndrome
 2020;14(6):2081-2085. (In eng). DOI: 10.1016/j.dsx.2020.09.028.
- Mayeda L, Katz R, Ahmad I, et al. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. BMJ Open Diabetes Res Care
 2020;8(1) (In eng). DOI: 10.1136/bmjdrc-2019-000991.
- Sheng X, Xiong GH, Yu PF, Liu JP. The Correlation between Time in Range and
 Diabetic Microvascular Complications Utilizing Information Management Platform. Int J
 Endocrinol 2020;2020:8879085. (In eng). DOI: 10.1155/2020/8879085.
- Yoo JH, Choi MS, Ahn J, et al. Association Between Continuous Glucose MonitoringDerived Time in Range, Other Core Metrics, and Albuminuria in Type 2 Diabetes.
 Diabetes technology & therapeutics 2020;22(10):768-776. (In eng). DOI:
- 877 10.1089/dia.2019.0499.
- 878 22. Medtronic MiniMed 770G System.
- 879 (<u>https://www.medtronicdiabetes.com/products/minimed-770g-insulin-pump-system</u>).
- Tandem Control-IQ Technology. (<u>https://www.tandemdiabetes.com/products/t-slim-x2-insulin-pump/control-iq</u>).
- 882 24. Omnipod 5 Automated Insulin Delivery System. (https://www.omnipod.com/what-is-omnipod/omnipod-5).
- Berget C, Messer LH, Vigers T, et al. Six months of hybrid closed loop in the real-world:
 An evaluation of children and young adults using the 670G system. Pediatric diabetes
 2020;21(2):310-318. (In eng). DOI: 10.1111/pedi.12962.
- Messer LH, Berget C, Vigers T, et al. Real world hybrid closed-loop discontinuation:
 Predictors and perceptions of youth discontinuing the 670G system in the first 6 months.
 Pediatric diabetes 2020;21(2):319-327. (In eng). DOI: 10.1111/pedi.12971.
- Akturk HK, Giordano D, Champakanath A, Brackett S, Garg S, Snell-Bergeon J. Long-term real-life glycaemic outcomes with a hybrid closed-loop system compared with
 sensor-augmented pump therapy in patients with type 1 diabetes. Diabetes, obesity &
 metabolism 2020;22(4):583-589. (In eng). DOI: 10.1111/dom.13933.
- 894 28. Gingras V, Taleb N, Roy-Fleming A, Legault L, Rabasa-Lhoret R. The challenges of
 895 achieving postprandial glucose control using closed-loop systems in patients with type 1

896		diabetes. Diabetes, obesity & metabolism 2018;20(2):245-256. (In eng). DOI:
897		10.1111/dom.13052.
898	29.	Cornell S. A review of GLP-1 receptor agonists in type 2 diabetes: A focus on the
899		mechanism of action of once-weekly agents. Journal of clinical pharmacy and
900		therapeutics 2020;45 Suppl 1(Suppl 1):17-27. (In eng). DOI: 10.1111/jcpt.13230.
901	30.	Patel D. Glycaemic and non-glycaemic efficacy of once-weekly GLP-1 receptor agonists
902		in people with type 2 diabetes. Journal of clinical pharmacy and therapeutics 2020:45
903		Suppl 1(Suppl 1):28-42. (In eng). DOI: 10.1111/icpt.13224.
904	31.	Williams DM. Evans M. Semaglutide: Charting New Horizons in GLP-1 Analogue
905	011	Outcome Studies. Diabetes therapy : research, treatment and education of diabetes and
906		related disorders 2020;11(10):2221-2235. (In eng). DOI: 10.1007/s13300-020-00917-8.
907	32	Ilkowitz JT. Katikaneni R. Cantwell M. Ramchandani N. Hentulla RA. Adjuvant
908	52.	Liraglutide and Insulin Versus Insulin Monotherany in the Closed-Loon System in Type
909		1 Diabetes: A Randomized Open-Labeled Crossover Design Trial Journal of diabetes
910		science and technology 2016:10(5):1108-14 (In eng) DOI: 10.1177/1932296816647976
911	33	Sherr II. Patel NS Michaud CI et al Mitigating Meal-Related Glycemic Excursions in
912	55.	an Insulin-Sparing Manner During Closed-Loop Insulin Delivery: The Beneficial Effects
912		of Adjunctive Pramlintide and Liraglutide Diabetes care 2016:39(7):1127-34 (In eng)
910		DOI: 10.2337/dc16-0089
914	34	Galderisi A. Sherr I. VanName M. et al. Pramlintide but Not Liraglutide Suppresses
916	54.	Meal-Stimulated Glucagon Responses in Type 1 Diabetes The Journal of clinical
917		endocrinology and metabolism 2018:103(3):1088-1094 (In eng) DOI: 10.1210/ic.2017-
010		02265
919	35	Marso SP Bain SC Consoli A et al Semaglutide and Cardiovascular Outcomes in
920	55.	Patients with Type 2 Diabetes. The New England journal of medicine
921		2016:375(19):1834-1844 (In eng) DOI: 10 1056/NFIMoa1607141
922	36	Aroda VR Ahmann A Cariou B et al Comparative efficacy safety and cardiovascular
923	50.	outcomes with once-weekly subcutaneous semaglutide in the treatment of type 2
920		diabetes: Insights from the SUSTAIN 1-7 trials. Diabetes & metabolism 2019:45(5):409-
925		418 (In eng) DOI: 10.1016/i diabet 2018.12.001
926	37	Verma S. McGuire DK. Bain SC. et al. Effects of glucagon-like pentide-1 receptor
920	57.	agonists liraglutide and semaglutide on cardiovascular and renal outcomes across body
028		mass index categories in type 2 diabetes: Results of the LEADER and SUSTAIN 6 trials
020 020		Dispetes obesity & metabolism 2020:22(12):2487-2492 (In eng) DOI:
930		$10\ 1111/dom\ 14160$
021	38	Mosenzon O Blicher TM Rosenlund S et al Efficacy and safety of oral semaglutide in
931	50.	nation to with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-
022		controlled randomised phase 3a trial. The lancet Diabetes & endocrinology
933		2010.7(7).515 527 (In eng) DOI: 10.1016/s2213.8587(10)30102.5
934 025	30	Livingstone SL Levin D. Looker HC et al. Estimated life expectancy in a Scottish cohort
932	57.	with type 1 diabetes 2008 2010 IAMA 2015:212(1):27 44
930	40	Ou H T. Vang C. V. Wang I.D. Hwang I.S. Wu I.S. Life Expectance and Lifetime
937 020	4 0.	Health Care Expenditures for Type 1 Diabetes: A Nationwide Longitudinal Cabert of
920 920		Incident Cases Followed for 14 Vears Value Health 2016:10(8):076-84
929	<i>A</i> 1	Uzojawe C. Liang V. Whitmire S. Danrocki V. Semaglutida Onco Wookly Dersistence
940 0/1	Τ 1.	and Adherence Versus Other GLP_1 RAs in Datients with Type 2 Dishetes in a US Deal
341		and Autorence versus Outer OLF-1 KAS III Faitents with Type 2 Diabetes III a US Real-

942		World Setting. Diabetes therapy : research, treatment and education of diabetes and
943		related disorders 2021;12(5):1475-1489. (In eng). DOI: 10.1007/s13300-021-01053-7.
944	42.	O'Neil PM, Birkenfeld AL, McGowan B, et al. Efficacy and safety of semaglutide
945		compared with liraglutide and placebo for weight loss in patients with obesity: a
946		randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial.
947		Lancet (London, England) 2018;392(10148):637-649. (In eng). DOI: 10.1016/s0140-
948		6736(18)31773-2.
949	43.	Htay T, Soe K, Lopez-Perez A, Doan AH, Romagosa MA, Aung K. Mortality and
950		Cardiovascular Disease in Type 1 and Type 2 Diabetes. Curr Cardiol Rep 2019;21(6):45.
951		(In eng). DOI: 10.1007/s11886-019-1133-9.
952	44.	Aroda VR, Bain SC, Cariou B, et al. Efficacy and safety of once-weekly semaglutide
953		versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas)
954		in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label,
955		parallel-group, multicentre, multinational, phase 3a trial. The lancet Diabetes &
956		endocrinology 2017;5(5):355-366. (In eng). DOI: 10.1016/s2213-8587(17)30085-2.
957	45.	Sorli C, Harashima SI, Tsoukas GM, et al. Efficacy and safety of once-weekly
958		semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1):
959		a double-blind, randomised, placebo-controlled, parallel-group, multinational,
960		multicentre phase 3a trial. The lancet Diabetes & endocrinology 2017;5(4):251-260. (In
961		eng). DOI: 10.1016/s2213-8587(17)30013-x.
962	46.	Rodbard HW, Lingvay I, Reed J, et al. Semaglutide Added to Basal Insulin in Type 2
963		Diabetes (SUSTAIN 5): A Randomized, Controlled Trial. The Journal of clinical
964		endocrinology and metabolism 2018;103(6):2291-2301. (In eng). DOI: 10.1210/jc.2018-
965		00070.
966	47.	Ahrén B, Atkin SL, Charpentier G, et al. Semaglutide induces weight loss in subjects
967		with type 2 diabetes regardless of baseline BMI or gastrointestinal adverse events in the
968		SUSTAIN 1 to 5 trials. Diabetes, obesity & metabolism 2018;20(9):2210-2219. (In eng).
969		DOI: 10.1111/dom.13353.
970	48.	Beck RW, Bergenstal RM, Cheng P, et al. The Relationships Between Time in Range,
971		Hyperglycemia Metrics, and HbA1c. Journal of diabetes science and technology
972		2019;13(4):614-626. (In eng). DOI: 10.1177/1932296818822496.
973	49.	Vigersky RA, McMahon C. The Relationship of Hemoglobin A1C to Time-in-Range in
974		Patients with Diabetes. Diabetes technology & therapeutics 2019;21(2):81-85. (In eng).
975		DOI: 10.1089/dia.2018.0310.
976	50.	Cocks K, Torgerson DJ. Sample size calculations for pilot randomized trials: a
977		confidence interval approach. J Clin Epidemiol 2013;66(2):197–201.
978	51.	Petersen KS, Blanch N, Keogh JB, Clifton PM. Effect of weight loss on pulse wave
979		velocity: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol
980		2015;35(1):243–52.
981	52.	Pratley RE, Aroda VR, Catarig AM, Lingvay I, Lüdemann J, Yildirim E, Viljoen A.
982		Impact of patient characteristics on efficacy and safety of once-weekly semaglutide
983		versus dulaglutide: SUSTAIN 7 post hoc analyses. BMJ Open, 2020 Nov
984		16:10(11):e037883.
504		10,10(11).005/005.
985	53.	Weinstock RS, Xing D, Maahs DM, Michels A, Rickels MR, Peters AL, Bergenstal RM,
986		Harris B, Dubose SN, Miller KM, Beck RW; T1D Exchange Clinic Network. Severe

987 988	hypoglycemia and diabetic ketoacidosis in adults with type 1 diabetes: results from the T1D Exchange clinic registry. J Clin Endocrinol Metab. 2013 Aug;98(8):3411-9.
989	
990	
991	
992	
993	
994	Appendix A: General Guidance on HCL setting adjustments during drug up titration
995	• Investigators must train subjects on diabetes self-management principles including
996	hypoglycemia recognition, prevention, and treatment. This includes HCL specific
997	training on hypoglycemia and hyperglycemia prevention and trouble shooting
998	• At randomization and week 4 and Week 8, based on baseline glycemic control (time in
999	range) and risk of hypoglycemia (time below range), investigators should adjust the HCL
1000	settings. The general guidance is provided below.
1001	

1002 TIR; time in range 70-180 mg/dL, TBR; time below 70 mg/dL, ICR: Insulin to carbohydrate ratio 1003 1004 *Each individual with type 1 diabetes is different in terms of response to GLP-1RA and risk for

hypoglycemia. This is a general guidance and Investigators should adjust settings necessary to reduce the
 risk for hypoglycemia based on patient-related factors and clinical experience.

1007 #If needed, investigators can reduce the correction factors up to 10% (TIR>50% and TBR <4%) or 20%

- (TBR>4%) in addition to changes in basal rate or ICR. Moreover, investigators may recommend patients
 to use temporary manual mode, exercise mode/temporary target if above changes are not sufficient to
- 1010 mitigate hypoglycemia risk.
- 1011

1012

1013

Appendix B: Guidance on the functionality of the hybrid closed-loop systems

	Medtronic 670/770G	Tandem Control IQ	Omnipod 5
How it works	Automated basal insulin delivery every 5 minutes based on total daily dose from the past 2-6 days	Automated basal insulin delivery that increases or decreases patient' programmed basal rate based on CGM glucose trends	Automated basal insulin delivery every 5 minutes based on total daily dose from the last pod change (2-3 days)
Algorithm target glucose level/range	120 mg/dL (fixed)	112.5-160 mg/dL (fixed)	110-150 mg/dL (adjustable in increment of 10 mg/dL)
What you can adjust? (modifiable settings in HCL)	Insulin: Carb ratio Active insulin time	Basal rate Insulin: Carb ratio Correction factor	Insulin: Carb ratio Active insulin time Correction factor
Auto bolus feature	No	Yes, automated boluses every 1 hours (60% of calculated bolus) if needed. If patient takes bolus by him/herself, auto bolus clock resets to 60 minutes from the patient's manual bolus.	No
Additional features on closed-loop mode	Temp target (during exercise or stress): increases the glucose target to 150 mg/dL	Exercise: Increase the glucose target to 140- 160 mg/dL Sleep: changes the	Activity: changes the target to 150 mg/dL

ta n	arget to 112.5 to 120 mg/dL but stops auto	
b	polusing during this	
n	node.	

1015 All physicians will be trained on basic functionality of HCL, adjustable settings and trouble-1016 shooting guidance per manufacturer instructions. For more information on comparisons of 1017 various HCL system, click this link- <u>https://www.bdcpantherdiabetes.org/device-comparison</u> 1018

Appendix C: General Guidance on HCL setting adjustments after Week 10

1022 Glycemic goal for the most patients with T1D is TIR >70% and TBR <4%. Investigators are
 1023 encouraged to review HCL settings and adjust if patient is not within the glycemic goal.
 1024

1025

1014

1019

- 1026 TIR; time in range 70-180 mg/dL, TBR; time below 70 mg/dL, ICR: Insulin to carbohydrate ratio
- *This is a general guidance and Investigators should adjust settings necessary to reduce the risk for
 hypoglycemia and improve glycemic control based on patient-related factors and clinical experience
- #If needed, investigators may strengthen correction factor (for Tandem Control IQ or Omnipod 5) or
 active insulin time (for 670/770G).

1032 1033 1034 1035	[§] Reduce the correction factors up to 10% (TIR>50% and TBR <4%) or 20% (TBR>4%) in addition to changes in basal rate or ICR. Moreover, investigators may recommend patients to use temporary manual mode, exercise mode/temporary target if above changes are not sufficient to mitigate hypoglycemia risk.	
1036 1037 1038 1039 1040 1041 1042 1043 1044	AI	opendix D: General guidance on the management of hypoglycemia
1045	•	Follows the guidance provided in the Appendix A-C to adjust HCL settings during drug
1046		up titration to minimize the risk for hypoglycemia.
1047	•	Each subject must have glucagon product with them as a part of the standards of diabetes
1048		care. Subject and their caregiver (if any) must be trained on the use of glucagon product.
1049	•	Subject should be advised to follow treatment for hypoglycemia. if glucose <70 mg/dL,
1050		take 15 grams of carbs (or less as HCL may have insulin suspension for anticipated
1051		hypoglycemia) and repeat glucose after 15 minutes till glucose is $>70 \text{ mg/dL}$
1052	•	If patient experience severe hypoglycemia, it should be reported as AE or SAE (if criteria
1053		for SAE are met). HCL setting should be adjusted to prevent another episode of
1054		hypoglycemia
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071		

Appendix E: Guidance on the checking for ketones

