This is the classic website, which will be retired eventually. Please visit the modernized instead.
Working… Menu

Effect of Transcranial Near InfraRed Light On Cerebral Function in Young and Healthy Older Subjects: a fMRI Study (TIROC) (TIROC)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details. Identifier: NCT05845216
Recruitment Status : Recruiting
First Posted : May 6, 2023
Last Update Posted : September 7, 2023
Commissariat A L'energie Atomique
Fonds de Dotation Clinatec
Information provided by (Responsible Party):
University Hospital, Grenoble

Brief Summary:

Numerous studies have shown that the extra-cranial application of near infrared light (λ=600-1000nm) (also called transcranial photobiomodulation or tPBM), has a positive impact on brain function in both humans and experimental animal models and a neuroprotective effect in animal models. Several of these studies have reported that tPBM could impart more beneficial effects in aged or diseased brains. The primary objective of this study is to use fMRI to compare the cerebral activations in response to a finger tapping motor task, before and after 24min of tPBM versus sham stimulation, in old and young healthy human subjects.

The hypothesis of the investigators is that tPBM improves brain function in participants who will be treated using the active device in comparison with those treated with the sham device and that this effect should will be more pronounced in the older subjects.

Condition or disease Intervention/treatment Phase
Healthy Volunteers Device: ACTIVE Transcranial photobiomodulation (tPBM) Device: SHAM Transcranial photobiomodulation (tPBM) Not Applicable

Detailed Description:

Many studies have shown that the extra-cranial application of light in the red and near infrared range (λ=600-1000nm), also called transcranial PhotoBioModulation (tPBM), could have a neuroprotective effect and a positive impact on brain function in the mammalian brain.

At the cellular level, it is thought that the mechanism mainly relies on the activation of the cytochrome C oxidase and/or interfacial nanowater, two photoacceptors located within the mitochondria that absorb red and near infrared photons. The interaction between the photons and the photoacceptor results in a cascade of secondary events, activating the respiratory chain and increasing Adenosine TriPhosphate (ATP) synthesis, the main source of energy in the cell.

In humans, an increasing number of studies have reported an improvement of cognitive functions after one or several tPBM sessions in patients suffering Alzheimer's or Parkinson's disease, or in cases of stroke. Recently, some EEG and fMRI studies on healthy subjects, young and/or old, have also reported a modification of neuronal activation patterns at rest or during the performance of a cognitive task.

Regarding tPBM, this is a non-pharmacological and non-surgical treatment, for which no adverse effects have been reported. Further, the FDA has already approved the use of several PBM devices for therapeutic use in humans, for example, the treatment of pain, inflammation or dermal conditions.

Those preliminary results in humans are thus very encouraging. However, the precise mechanism of action remains to be better characterised, and further studies are required to better define its effects on the human brain and its indications for a therapeutic use. Moreover the extent tPBM influence on the brain of the elderly is still very unclear. In the present study, the investigators aim to evaluate brain function before and after a tPBM session, during the realisation of a motor task or at rest, while comparing a group of young and elderly subjects.

The working hypotheses of the investigators are as follows :

  • tPBM will improve motor performances and brain function of all subjects, and to a greater extent that of the older subjects
  • tPBM will change brain activity, reorganising large scale neuronal networks at rest.

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Estimated Enrollment : 64 participants
Allocation: Randomized
Intervention Model: Crossover Assignment
Intervention Model Description: The Primary Purpose of this clinical trial is to test a prototype device for feasibility and not health outcomes. This study is conducted to confirm the design and operating specifications of a device before beginning a full clinical trial.
Masking: Single (Participant)
Primary Purpose: Other
Official Title: Effect of Transcranial Near InfraRed Light On Cerebral Function in Young and Healthy Older Subjects: a Functional Magnetic Resonance Imaging (fMRI) Study (TIROC)
Actual Study Start Date : September 1, 2023
Estimated Primary Completion Date : May 15, 2025
Estimated Study Completion Date : May 15, 2026

Arm Intervention/treatment
Experimental: ACTIVE tPBM
one session of 24-min tPBM with the active device (tPBM helmet with 80 Light-Emitting Diodes (LEDs) emitting red and near-infrared light at 670 - 810nm)
Device: ACTIVE Transcranial photobiomodulation (tPBM)
fMRI records before and after ACTIVE Transcranial photobiomodulation (tPBM)

Sham Comparator: SHAM tPBM
one session of 24-tPBM with a sham device visually identical to the active device
Device: SHAM Transcranial photobiomodulation (tPBM)
fMRI records before and after SHAM Transcranial photobiomodulation (tPBM)

Primary Outcome Measures :
  1. Cerebral activations in response to a Finger Tapping motor task. [ Time Frame: 24 minutes ]
    Cerebral activation measured by fMRI (BOLD signal change) in response to a finger tapping motor tap (contrasted against a resting baseline), before and after tPBM/Sham stimulation

Secondary Outcome Measures :
  1. Performances in the Finger Tapping motor task [ Time Frame: 24 minutes ]
    Performances in the Finger Tapping motor task (correct movement execution speed) before and after tPBM / Sham stimulation

  2. Functional connectivity (BOLD signal variations during the finger tapping task compared to rest state) [ Time Frame: 24 minutes ]
    Functional connectivity measured by fMRI (BOLD signal variation during the Finger tapping task compared to rest state) before and after tPBM / sham stimulation

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Layout table for eligibility information
Ages Eligible for Study:   18 Years to 85 Years   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes

Inclusion Criteria:

  • Man or woman
  • Aged 18 to 40 (young group), or 60 to 85 (elderly)
  • Right-handed (Edinburgh score for hand laterality >70%)
  • No taking psychoactive or anti-depressants medicine
  • Normal or corrected vision
  • Having expressed their consent to the research
  • Affiliated to a social security scheme
  • Registered in the national file of people lend themselves to biomedical research

Exclusion Criteria:

  • Known cognitive disorder, neurologic trouble, neurodegenerative disease or psychiatric illness,
  • Motor disorder able to impair the task management
  • Contraindication for MRI (metallic implant, non-removable piercing, pace-maker, metallic prosthesis, claustrophobia , …)
  • Montreal Cognitive Assessment (MoCA) score <26
  • People referred to in Articles L1121-5 to L1121-8 of the Public Health Code(corresponds to all protected persons: pregnant, parturient or breastfeeding women, persons deprived of liberty by judicial or administrative decision, persons subject of psychiatric care, minors, and persons subject to a legal protection measure: guardianship, curators or safeguard of justice)
  • Persons in period of exclusion from another clinical investigation
  • Subjects participating in another clinic investigation,
  • Subjects who would receive more than 4500 euros in compensation due to his participation in other biomedical research in the 12 months preceding this study

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its identifier (NCT number): NCT05845216

Layout table for location contacts
Contact: Daniel ANGLADE, MD, PhD 04 38 78 17 46
Contact: Caroline SANDRE-BALLESTER, PhD 0438782851

Layout table for location information
Clinatec Cea/Chuga Recruiting
Grenoble, France, 38054
Contact: Daniel ANGLADE, MD, PhD    0438781746   
Contact: Caroline SANDRE-BALLESTER, PhD    0438782851   
Sponsors and Collaborators
University Hospital, Grenoble
Commissariat A L'energie Atomique
Fonds de Dotation Clinatec
Layout table for additonal information
Responsible Party: University Hospital, Grenoble Identifier: NCT05845216    
Other Study ID Numbers: 38RC22.0227
First Posted: May 6, 2023    Key Record Dates
Last Update Posted: September 7, 2023
Last Verified: September 2023
Individual Participant Data (IPD) Sharing Statement:
Plan to Share IPD: No

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
Keywords provided by University Hospital, Grenoble:
Transcranial photobiomodulation
near InfraRed
brain function